Sains Malaysiana 53(10)(2024): 3341-3354
http://doi.org/10.17576/jsm-2024-5310-09
Comprehensive Insights into Sitobion avenaePreferences and Performance on Pakistan’s
Wheat Cultivars Leading to Identification of Potential RNAi Targets
(Wawasan Komprehensif tentang Keutamaan dan Prestasi Sitobion avenae pada Kultivar Gandum Pakistan yang Membawa kepada Pengenalpastian Sasaran Berpotensi RNAi)
RUHMA MUKHTAR, EIJAB AFZAL,
RABIA NOREEN, NADIA ZEESHAN & AMBER AFROZ*
Department
of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus,
Gujrat Pakistan
Received:
14 January 2024/Accepted: 26 August 2024
Abstract
Sitobion avenae, a notable hemipteran pest,
poses a significant economic threat to Triticum aestivum due to its
short generation times and high reproductive rates. Challenges like the
development of insecticide resistance, the limited impact of insecticidal
genes, and associated risks led to seeking a more precise approach like RNA
interference. This study evaluated S. avenae response on seven different local cultivars (Anaj-2021, Subhani-2022,
Fakhar-e-Bhakkar-2021, Akbar-2019, Mexi-Pak-2022, Barani-2022, &
Dilkash-2022) through aphid preference test, aphid choice assay,
and aphid performance test. Further, differential proteomics of S. avenae (pre- and post-feeding on susceptible and
resistant wheat cultivars) was performed using Sodium Dodecyl
Sulphate-Polyacrylamide Gel Electrophoresis. Among the local wheat cultivars,
Anaj-2021 was regarded as the most susceptible cultivar while Barani-2022 was
declared the most resistant. The differential proteome analysis of Anaj-2021 (S),
and Barani-2022 (R) show 11 upregulated proteins including Glutathione S-
transferase, Cathepsin, Carbonic anhydrases, Ecdysone induced protein, Odorant
binding protein 3, Heat shock protein, Salivary effector protein, SID1-like
protein, Sodium channel protein, chemosensory protein, and trypsin were
upregulated in S. avenaeon wheat feeding as
compared to non-feeding. Trypsin, cathepsin-B and carbonic anhydrases are
connected to detoxification and digestion. While odorant binding proteins,
salivary effector proteins, sodium channel proteins and ecdysone- induced
proteins facilitate feeding process in S. avenae. The enhanced expression of proteins
having detoxification, digestion or defense activity
implicates their essential role in the survival of S. avenae. Therefore, these proteins have the potential to serve as RNA interference
targets, against which double-stranded RNA could be designed and expressed in
wheat cultivars to make them resistant to local S. avenae infestation and avert yield loss.
Keywords: Phylogenetic analysis; proteome; RNA interference; SDS-PAGE
Abstrak
Sitobion avenae, perosak hemiptera yang terkenal
menimbulkan ancaman ekonomi yang ketara kepada Triticum aestivum kerana
masa generasinya yang singkat dan kadar pembiakan yang tinggi. Cabaran seperti
pembangunan rintangan racun serangga, kesan terhad gen insektisida dan risiko
yang berkaitan membawa kepada mencari pendekatan yang lebih tepat seperti
gangguan RNA. Kajian ini menilai tindak balas S. avenae pada tujuh
kultivar tempatan yang berbeza (Anaj-2021, Subhani-2022, Fakhar-e-Bhakkar-2021,
Akbar-2019, Mexi-Pak-2022, Barani-2022 & Dilkash-2022) melalui aphid ujian
keutamaan, ujian pilihan aphid dan ujian prestasi aphid. Selanjutnya, proteomik
pembezaan S. avenae (sebelum dan selepas makan pada kultivar gandum yang
mudah terdedah dan tahan) dilakukan menggunakan Sodium Dodecyl
Sulphate-Polyacrylamide Gel Electrophoresis. Antara kultivar gandum tempatan,
Anaj-2021 dianggap sebagai kultivar yang paling mudah terdedah manakala
Barani-2022 diisytiharkan paling tahan. Analisis proteom pembezaan Anaj-2021
(S) dan Barani-2022 (R) menunjukkan 11 protein terkawal termasuk Glutathione
S- transferase, Cathepsin, Carbonic anhydrases, Ecdysone induced protein,
Odorant binding protein 3, Heat shock protein, Salivary effector protein,
protein seperti SID1, protein saluran Sodium, protein kemoderia dan tripsin
telah dikawal selia dalam S. avenae pada pemberian makan gandum
berbanding dengan tidak diberi makan. Trypsin, cathepsin-B dan anhidrase
karbonik disambungkan kepada detoksifikasi dan pencernaan. Manakala protein
pengikat bau, protein efektor air liur, protein saluran natrium dan protein
yang disebabkan oleh ecdysone memudahkan proses penyusuan di S. avenae.
Pengekspresan protein yang dipertingkatkan mempunyai aktiviti detoksifikasi,
pencernaan atau pertahanan membabitkan peranan pentingnya dalam kemandirian S.
avenae. Oleh itu, protein ini berpotensi untuk berfungsi sebagai sasaran
gangguan RNA yang terhadapnya RNA untai dua boleh direka bentuk dan
diekspresikan dalam kultivar gandum untuk menjadikannya tahan terhadap serangan S. avenae tempatan dan mengelakkan kehilangan hasil.
Kata kunci: Analisis filogenetik; gangguan RNA; proteome; SDS-PAGE
REFERENCES
Afroz, A., Ali, G.M., Mir, A. &
Komatsu, S. 2011. Application of proteomics to investigate stress-induced
proteins for improvement in crop protection. Plant Cell Reports 30: 745-763.
Afzal,
F., Chaudhari, S.K., Gul, A., Farooq, A., Ali, H., Nisar, S., Sarfraz, B.,
Shehzadi, K.J. & Mujeeb-Kazi, A.
2015. Bread wheat (Triticum aestivum L.) under biotic and abiotic
stresses: An overview. In Crop Production
and Global Environmental Issues, edited by Hakeem, K. Springer, Cham. pp.
293-317.
Akhremko,
A., Vasilevskaya, E. & Fedulova, L. 2020. Adaptation of two-dimensional
electrophoresis for muscle tissue analysis. Slovak
Journal of Food Sciences 14:
595-601.
Akhtar,
N., Hashmat, R.T., Jilani, G., Chughtai, S., Irshad, M. & Yasmin, S. 2007.
Resistance of different wheat lines to Rhopalosiphum padi (L.)(Aphididae: Homoptera) in Pakistan. Pakistan
Journal of Zoology 39(3):
191-194.
Awmack,
C.S. & Leather, S.R. 2002. Host plant quality and fecundity in herbivorous
insects. Annu. Rev. Entomol. 47: 817-844.
Bansal,
R. & Michel, A.P. 2013. Core RNAi machinery and Sid1, a component
for systemic RNAi, in the hemipteran insect, Aphis glycines. International Journal of Molecular Sciences 14(2): 3786-3801.
Buhler,
A. & Schweiger, R. 2023. Previous infestation by conspecifics leads to a
transient increase of the performance of Sitobion avenae aphids on wheat
leaves. Ecological Entomology 49: 476-488. doi: 10.1111/een.13316
Cai,
Q., Zhang, Q. & Cheo, M. 2004. Contribution of indole alkaloids to Sitobion
avenae (F.) resistance in wheat. Journal
of Applied Entomology 128(8):
517-521.
Cao,
H-H., Pan, M-Z., Liu, H-R., Wang, S-H. & Liu, T-X. 2015. Antibiosis and
tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat
cultivar. Bulletin of Entomological
Research 105(4): 448-455.
Cao,
H-H., Zhang, M., Zhao, H., Zhang, Y., Wang, X-X., Guo, S-S., Zhang, Z-F. &
Liu, T-X. 2014. Deciphering the mechanism of β-aminobutyric acid-induced
resistance in wheat to the grain aphid, Sitobion avenae. PLoS ONE 9(3): e91768.
Castro,
A.M., Vasicek, A., Manifiesto, M., Giménez, D., Tacaliti, M.S., Dobrovolskaya,
O., Röder, M.S., Snape, J.W. & Börner, A. 2005. Mapping antixenosis genes
on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat
aphid. Plant Breeding 124(3): 229-233.
De
Mandal, S., Chhakchhuak, L., Gurusubramanian, G. & Kumar, N.S. 2014.
Mitochondrial markers for identification and phylogenetic studies in insects -
A review. DNA Barcodes 2(1): 1-9.
Dembilio,
Ó., Jacas, J.A. & Llácer, E. 2009. Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus
ferrugineus (Col. Curculionidae)? Journal
of Applied Entomology 133(7):
565-567.
Deng,
F. & Zhao, Z. 2014. Influence of catalase gene silencing on the
survivability of Sitobion avenae. Archives
of Insect Biochemistry and Physiology 86(1): 46-57.
Douglas,
A. 2006. Phloem-sap feeding by animals: Problems and solutions. Journal of Experimental Botany 57(4): 747-754.
Feng,
H., Chen, W., Hussain, S., Shakir, S., Tzin, V., Adegbayi, F., Ugine, T., Fei,
Z. & Jander, G. 2023. Horizontally transferred genes as RNA interference
targets for aphid and whitefly control. Plant
Biotechnology Journal 21(4):
754-768.
Foster,
S.P., Paul, V.L., Slater, R., Warren, A., Denholm, I., Field, L.M. &
Williamson, M.S. 2014. A mutation (L1014F) in the voltage‐gated sodium
channel of the grain aphid, Sitobion avenae, is associated with
resistance to pyrethroid insecticides. Pest
Management Science 70(8):
1249-1253.
Gebretsadik,
K.G., Zhang, Y. & Chen, J. 2022. Screening and evaluation for antixenosis
resistance in wheat accessions and varieties to grain aphid, Sitobion
miscanthi (Takahashi)(Hemiptera: Aphididae). Plants 11(8): 1094.
Giordanengo,
P., Brunissen, L., Rusterucci, C., Vincent, C., van Bel, A., Dinant, S.,
Girousse, C., Faucher, M. & Bonnemain, J-L. 2010. Compatible plant-aphid
interactions: How aphids manipulate plant responses. Comptes Rendus Biologies 333(6-7):
516-523.
Guo,
H., Zhang, Y., Li, B., Li, C., Shi, Q., Zhu-Salzman, K., Ge, F. & Sun, Y.
2023. Salivary carbonic anhydrase II in winged aphid morph facilitates plant
infection by viruses. Proceedings of the
National Academy of Sciences 120(14):
e2222040120.
Guo,
M., Ye, J., Gao, D., Xu, N. & Yang, J. 2019. Agrobacterium-mediated
horizontal gene transfer: Mechanism, biotechnological application, potential
risk and forestalling strategy. Biotechnology
Advances 37(1): 259-270.
He, F.
2011. Bradford protein assay. Bio-protocol 1(6): e45.
Hesler,
L. & Tharp, C. 2005. Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 143: 153-160.
Horiike,
T. 2016. An introduction to molecular phylogenetic analysis. Reviews in Agricultural Science 4: 36-45.
Hu,
X-S., Liu, Y-J., Wang, Y-H., Wang, Z., Yu, X-L., Wang, B., Zhang, G-S., Zhao,
H-Y. & Liu, T.X. 2016. Resistance of wheat accessions to the English grain
aphid Sitobion avenae. PLoS ONE 11(6): e0156158.
Hussain,
D., Asrar, M., Khalid, B., Hafeez, F., Saleem, M., Akhter, M., Ahmed, M., Ali,
I. & Hanif, K. 2022. Insect pests of economic importance attacking wheat
crop (Triticum aestivum L.) in Punjab, Pakistan. International Journal of Tropical Insect Science 42: 9-20.
Huvenne,
H. & Smagghe, G. 2010. Mechanisms of dsRNA uptake in insects and potential
of RNAi for pest control: A review. Journal
of Insect Physiology 56(3):
227-235.
Jacquin-Joly,
E., Vogt, R.G., François, M-C. & Nagnan-Le Meillour, P. 2001. Functional
and expression pattern analysis of chemosensory proteins expressed in antennae
and pheromonal gland of Mamestra brassicae. Chemical Senses 26(7):
833-844.
Kranti,
W., Nivedita, G. & Shindikar, M. 2021. Understanding the plant aphid
interaction: A review. European Journal
of Biology and Biotechnology 2(6):
1-6.
Kurreck,
J. 2009. RNA interference: From basic research to therapeutic applications. Angewandte Chemie International Edition 48(8): 1378-1398.
Leimu,
R. & Koricheva, J. 2006. A meta-analysis of genetic correlations between
plant resistances to multiple enemies. The
American Naturalist 168(1):
E15-E37.
Liu,
Y-L., Guo, H., Huang, L-Q., Pelosi, P. & Wang, C-Z. 2014. Unique function
of a chemosensory protein in the proboscis of two Helicoverpa species. Journal of Experimental Biology 217(10): 1821-1826.
Mahmood,
I., Afroz, A., Malik, M.F., Zeeshan, N., Khan, M.R., Rashid, U., Khan, M.A.,
Ashraf, N.M. & Alam, S. 2022. RNA interference‑mediated knockdown of
odorant‑binding protein 2 and MP58 gene causes mortality in Myzus
persicae. International Journal of Tropical Insect Sciences 42:
315-326. doi.10.1007/s42690-021-00546-z
Nam,
K.J., Powell, G. & Hardie, J. 2013. Does phloem-based resistance to aphid
feeding affect host-plant acceptance for reproduction? Parturition of the pea
aphid, Acyrthosiphon pisum, on two near-isogenic lines of Medicago
truncatula. Bulletin of Entomological
Research 103(6): 683-689.
Platková,
H., Skuhrovec, J. & Saska, P. 2020. Antibiosis to Metopolophium dirhodum (Homoptera: Aphididae) in spring wheat and emmer cultivars. Journal of Economic Entomology 113(6): 2979-2985.
Porcar,
M., Grenier, A-M., Federici, B. & Rahbé, Y. 2009. Effects of Bacillus
thuringiensis δ-endotoxins on the pea aphid (Acyrthosiphon pisum). Applied and Environmental Microbiology 75(14): 4897-4900.
Powell,
G., Tosh, C.R. & Hardie, J. 2006. Host plant selection by aphids:
Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51: 309-330.
Pyati,
P., Bandani, A.R., Fitches, E. & Gatehouse, J.A. 2011. Protein digestion in
cereal aphids (Sitobion avenae) as a target for plant defence by
endogenous proteinase inhibitors. Journal
of Insect Physiology 57(7):
881-891.
Roy,
S.S., Dasgupta, R. & Bagchi, A. 2014. A review on phylogenetic analysis: A
journey through modern era. Computational
Molecular Bioscience 4:
39-45.
Shafqat,
J. & Afroz, A. 2024a. RNA interference of Sitobion avenae voltage-gated sodium channels for improved grain aphid resistance. International
Journal of Tropical Insect Science 44: 1679-1689.
doi.10.1007/s42690-024-01261-1
Shafqat,
J. & Afroz, A. 2024b. Differential protein expression analysis of wheat
cultivars and grain aphids post-feeding. Journal of Tianjin University
Science and Technology 57(1): 143-164. doi.10.5281/zenodo.10612560
Smith,
C.M. & Chuang, W.P. 2014. Plant resistance to aphid feeding: Behavioral,
physiological, genetic and molecular cues regulate aphid host selection and
feeding. Pest Management Science 70(4): 528-540.
Sreelatha,
E., Sharma, H. & Gowda, C. 2018. Tolerance as mechanism of resistance to Helicoverpa
armigera (Hub.) in Chickpea (Cicer arietinum Linn.). Trends in Biosciences 11(2): 144-148.
Tabari,
M., Fathi, S., Nouri-Ganbalani, G., Moumeni, A. & Razmjou, J. 2017.
Antixenosis and antibiosis resistance in rice cultivars against Chilo
suppressalis (Walker)(Lepidoptera: Crambidae). Neotropical Entomology 46: 452-460.
Vellichirammal,
N.N., Gupta, P., Hall, T.A. & Brisson, J.A. 2017. Ecdysone signaling
underlies the pea aphid transgenerational wing polyphenism. Proceedings of the National Academy of
Sciences 114(6): 1419-1423.
Wains,
M.S., Javaid, M.M., Afzal, M.B.S., Ali, H.A., Sarfraz, M., Banazeer, A.,
Hussain, F. & Aslam, M.N. 2023. Surveillance and evaluation of climatic
factors on varietal screening against aphid population in wheat. Pakistan Journal of Biotechnology 20(02): 371-375.
Webster,
B. 2012. The role of olfaction in aphid host location. Physiological Entomology 37(1):
10-18.
Wyatt,
I. & White, P. 1977. Simple estimation of intrinsic increase rates for
aphids and tetranychid mites. Journal of
Applied Ecology 14(3): 757-766.
Xu, W.
& Han, Z. 2008. Cloning and phylogenetic analysis of sid-1-like genes from
aphids. Journal of Insect Science 8: 1-6.
Xue,
W., Fan, J., Zhang, Y., Xu, Q., Han, Z., Sun, J. & Chen, J. 2016.
Identification and expression analysis of candidate odorant-binding protein and
chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS ONE 11(8): e0161839.
Yu, X.,
Wang, G., Huang, S., Ma, Y. & Xia, L. 2014. Engineering plants for aphid
resistance: Current status and future perspectives. Theoretical and Applied Genetics 127: 2065-2083.
Yu,
X.D., Liu, Z.C., Huang, S.L., Chen, Z.Q., Sun, Y.W., Duan, P.F., Ma, Y.Z. &
Xia, L.Q. 2016. RNAi‐mediated plant protection against aphids. Pest Management Science 72(6): 1090-1098.
Zeb,
Q., Naeem, M., Khan, S.A. & Ahmad, S. 2016. Effect of insecticides on the
population of aphids, natural enemies and yield components of wheat. Pakistan Journal of Zoology 48(6): 1839-1848.
Zhang,
N., Liu, D., Zhai, Y., Li, X. & Simon, J.C. 2022. Functional divergence of
three glutathione transferases in two biotypes of the English grain aphid, Sitobion
avenae. Entomologia Experimentalis et
Applicata 170(1): 79-87.
Zhang,
Y., Fan, J., Francis, F. & Chen, J. 2018. Molecular characterization and
gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. Arch. Insect
Biochem. Physiol. 97(4): e21446. https://doi.org/10.1002/arch.21446
Zhang,
M., Zhou, Y., Wang, H., Jones, H.D., Gao, Q., Wang, D., Ma, Y. & Xia, L.
2013. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on
wheat plants. BMC Genomics 14: 560.
*Corresponding author;
email: dramber.afroz@uog.edu.pk